
Lecture 9
Data structures (cont.)

Computing platforms
Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018

Endianness

• Consider a number containing > 8 bits
• It takes several bytes -> it’s a data structure
• It seems to be simple
• But really, how to layout it in memory?
• There are two logical possibilities
• (and I know one illogical)

Big endian

• High order byte goes first

Big endian

• Most famous big-endian ISA: IBM System/360, MC68000

• Advantage:
• byte-level hex dump reads like number (higher byte on the left)
• I guess that’s because European got positional numbers from Arabs,
• So numbers are written in opposite order (relative to text)

• Disadvantage:
• You cannot convert long * to short *
• Converted pointer will point to upper half of long
• This is probably not what you want
• So many C compilers give a warning when you do such a conversion

Little endian

• Low order byte goes first

Little endian

• Lower byte goes first (at smaller address)
• Most famous little-endian ISA: DEC VAX, x86
• Advantage:
• Results of long * to short * conversion are intuitively correct

• Disadvantages:
• It is hard to understand numeric values in byte-level hex dump
• The code with pointer conversions is not portable to big-endian computers

Mixed endian ISA

• Many popular ISA, including ARM, are mixed endian
• There is a bit in PSW or other configuration register, switching the

CPU in big- or little-endian mode
• Typically, a given OS supports only one endianness for all processes
• Otherwise, it would be hard to exchange data between processes and

between processes and kernel

Illogical possibility

• PDP-endianness:
• On PDP-11, 16-bit integers are little-endian
• But 32-bit integer is big endian (higher half is stored at lower address)
• PDP-11 was 16-bit, but 32-bit endianness was sort of wired in hardware
• MUL instruction stored 32-bit result of 16-bit multiplication in PDP-endian
• PDP-11 32-bit successor, DEC VAX, was fully little endian

History of the term

• Actually a citation from Gulliver's Travels
• Oldest document using this term AFAIK is

IEN 137 (Internet Experiment Note)
ON HOLY WARS AND A PLEA FOR PEACE
by Danny Cohen, dated 1 April 1980
https://www.ietf.org/rfc/ien/ien137.txt
• Indeed, endianness is a big nuisance for
• network protocols
• data exchange formats
• software portability (pointer conversion issue)

https://www.ietf.org/rfc/ien/ien137.txt

Text strings

• Text strings are byte sequences of variable size
• There are two logical possibilities:
• Using a terminator byte at the end of the string (example: C ASCIIZ strings)
• Prepending a counter before beginning of the string (example: Pascal strings)

Terminator byte (ASCIIZ)

• In C, 0x00 byte is used as end of string terminator
• In Unix text files, ‘\n’ (0x0A byte) is used as end of line
• In DOS/Windows text files, ’\r\n’ byte pair is used as end of line

• This dates back to 1960s religious wars on how to interpret ASCII standard

• Advantages:
• You can have strings of unlimited length
• For long strings, terminator byte is cheaper (less metadata per volume of text)

• Disadvantage:
• You need to scan all string to find its length
• But you often need to know the length, for example to allocate memory for a copy

Counter before the string

• Disadvantages:
• Bitness of the counter implicitly limits the size of the string
• For example, in Pascal, strings are limited by 255 bytes
• Long (32-bit) counters create significant memory overhead

• Advantages:
• It is easy to find the size of the string

• Actually, many languages (Python, Java, even C++ STL) use strings
with counters

Packed structures (bit fields)

• Consider a situation, when you need to store information which is not
multiple of 8 bit
• Unsigned number between 0 and 63
• ASCII character (it is actually 7-bit)
• A set of 300 items
• CdM-8 register number

• Obvious solution: round the number of bits up to multiple of 8
• Advantage: data are easy to process
• Disadvantage: you lose memory

Bit fields

• You often see data formats, when data fields are packed into bytes
• These fields are called bit fields
• Example: CdM-8 instruction with two registers:

• In C, there is support for bit fields in structures
(but you probably won’t study it)
• In assemblers, there is no support, but you easy can implement them

using shifts and bitwise logical instructions

Opcode (4 bit) Rs
(2 bit)

Rd
(2 bit)

Bit field example in CdM-8 assembly

Get register number from instruction labelled t:
asect 0
ldi r1, t

t: ld r1,r0
ldi r1,0b00001100
and r0,r1
shr r1
shr r1
halt
end

Variant records

• Consider a person
• In University, there are two types of people: students and staff
• Students have attributes: name, SRN, course (year of admission),

faculty and group
(in NSU, faculty and year of admission are encoded in group number)
• Staff have attributes: name, payroll number, faculty or department,

position
• But sometimes you need a dataset, containing both students and staff

Tagged variant records

• Tagged record has a tag: a field designating the record type
• Tag must be placed on a fixed position in the structure,

so any code working with the structure can find the tag
• Variant records can be of fixed or variable length
• C union is not a tagged record
• But you can use struct with tags and union fields

to implement a tagged record
• Dynamically typed languages, like Python or JavaScript,

usually have type tags attached to all values

Prefix codes

• Prefix code can be seen as sequence of tagged variant records of
variable size
• A prefix can be seen as a record tag

encoding length and structure of following data
• In properly constructed prefix code, entire set of possible encoded

values ("codewords") must not contain any values that start with any
other value in the set
• Prefix codes are important because you can uniquely decode them

Prefix codes: examples

• Phone number with area code

• Local phone number for stationary phones (7 digits in Novosibirsk)

• Intercity call (Ru): 8-area code-7 digit local number

(maybe padded with leading 2)

• No local phone number in Russia can start with 8

• International call: +Country code-area code-local number

• Country codes are of variable length and actually use prefix system

themselves

• For example, +7 is formerly USSR numbering scheme.

In 1990s, most ex-USSR countries took their own country codes.

Ru and Kz still share 7 prefix, with 76 and 77 codes for Kz,

70..72 unused and rest of the codes for Ru

Other examples of prefix codes

• Huffman code (you will study it in C programming course)
• Morse code
• UTF-8 encoding
• Not only prefix, but self-synchronizing
• If you start decoding from wrong position (not from the prefix),

you can detect this and skip to next valid prefix
• Most other prefix codes do not have this property

• Many machine languages
• CdM-8 ISA has 1-byte and 2-byte instructions, selected by opcode
• x86 and VAX ISA have even more complex encoding schemes

UTF-8

Number
of bytes

Bits for
code point

First
code point

Last
code point Byte 1 Byte 2 Byte 3 Byte 4

1 7 U+0000 U+007F 0xxxxxxx

2 11 U+0080 U+07FF 110xxxxx 10xxxxxx

3 16 U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Machine-readable languages

• It is hard to draw a line between complex prefix code and a language
• Machine-readable language must be uniquely decodable
• Natural languages do not have this property
• Prefix codes are uniquely decodable, but most of them are too simple

to be considered a language
• Many computer languages actually are not prefix codes

you need some kind of backtracking to properly parse them
• For example, in C, a + sign is an operator on its own

and a prefix of ++ and += operators

Parsers

• Writing lexers and parsers is rather complex task,
so we won’t go into this now
• You will have courses dedicated to this topic
• But it is much simplier than you might think
• Tools to generate parsers based on formal description of the syntax
• Regular approaches to manually writing a parser
• Actually, when you learn rules for describing the syntax,

you probably can invent such approach yourself
• Parser libraries for many languages (XML, JSON, yaml)

• You have one task (parsing a text representation of set) which is
actually a simple parser

